Logo
Pattern

Discover published sets by community

Explore tens of thousands of sets crafted by our community.

Linear Algebra - Matrix Operations

18

Flashcards

0/18

Still learning
StarStarStarStar

Matrix power: A=[1110] A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, A3A^{3}

StarStarStarStar

A3=A×A×A=[1110][1110][1110]=[3221] A^{3} = A \times A \times A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}

StarStarStarStar

Cramer's Rule to solve Ax=bAx = b for x1x_1 where A=[2153] A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} and b=[411] b = \begin{bmatrix} 4 \\ 11 \end{bmatrix}

StarStarStarStar

x1=det([41113])det(A)=431112315=11=1 x_1 = \frac{\text{det}(\begin{bmatrix} 4 & 1 \\ 11 & 3 \end{bmatrix})}{\text{det}(A)} = \frac{4 \cdot 3 - 1 \cdot 11}{2 \cdot 3 - 1 \cdot 5} = \frac{1}{1} = 1

StarStarStarStar

Add two matrices: A=[1234] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B=[5678] B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}

StarStarStarStar

A+B=[681012] A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}

StarStarStarStar

Element-wise multiplication (Hadamard product): A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B=[5678]B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}

StarStarStarStar

AB=[5122132] A \circ B = \begin{bmatrix} 5 & 12 \\ 21 & 32 \end{bmatrix}

StarStarStarStar

Solve a system of linear equations using matrix inverse: [3121][x1x2]=[57]\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}

StarStarStarStar

[x1x2]=[3121]1[57]=[1/51/52/53/5][57]=[2.42.6] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 1/5 & 1/5 \\ -2/5 & 3/5 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 2.4 \\ 2.6 \end{bmatrix}

StarStarStarStar

Matrix norm: A \left\|A\right\| where A=[3405] A = \begin{bmatrix} 3 & 4 \\ 0 & 5 \end{bmatrix} and using the Frobenius norm

StarStarStarStar

A=32+42+02+52=9+16+0+25=50 \left\|A\right\| = \sqrt{3^2 + 4^2 + 0^2 + 5^2} = \sqrt{9 + 16 + 0 + 25} = \sqrt{50}

StarStarStarStar

Eigenvalues of a matrix: A=[2003] A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}

StarStarStarStar

Eigenvalues are λ1=2\lambda_1 = 2 and λ2=3\lambda_2 = 3

StarStarStarStar

Inverse of a 2x2 matrix: A=[4726] A = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}

StarStarStarStar

A1=1det(A)[6724]=[0.60.70.20.4] A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}

StarStarStarStar

Multiply a matrix by a scalar: 3×[2101] 3 \times \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}

StarStarStarStar

[6303] \begin{bmatrix} 6 & 3 \\ 0 & -3 \end{bmatrix}

StarStarStarStar

Transpose of a matrix: A=[7956] A = \begin{bmatrix} 7 & 9 \\ 5 & 6 \end{bmatrix}

StarStarStarStar

AT=[7596] A^T = \begin{bmatrix} 7 & 5 \\ 9 & 6 \end{bmatrix}

StarStarStarStar

Diagonalize a matrix: A=[3102] A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}

StarStarStarStar

P=[1101],  D=[3002],  P1=[1101],  A=PDP1 P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \; D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}, \; P^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \; A = PDP^{-1}

StarStarStarStar

Subtract two matrices: A=[9876] A = \begin{bmatrix} 9 & 8 \\ 7 & 6 \end{bmatrix}, B=[5432] B = \begin{bmatrix} 5 & 4 \\ 3 & 2 \end{bmatrix}

StarStarStarStar

AB=[4444] A - B = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}

StarStarStarStar

Determinant of a 2x2 matrix: A=[4726] A = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}

StarStarStarStar

det(A)=4×67×2=10\text{det}(A) = 4 \times 6 - 7 \times 2 = 10

StarStarStarStar

Matrix-vector multiplication: A=[2413] A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}, v=[56] \textbf{v} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}

StarStarStarStar

A×v=[2×5+4×61×5+3×6]=[3423] A \times \textbf{v} = \begin{bmatrix} 2 \times 5 + 4 \times 6 \\ 1 \times 5 + 3 \times 6 \end{bmatrix} = \begin{bmatrix} 34 \\ 23 \end{bmatrix}

StarStarStarStar

Rank of a matrix: A=[123456789] A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}

StarStarStarStar

rank(A)=2\text{rank}(A) = 2

StarStarStarStar

LU decomposition: A=[4363] A = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}

StarStarStarStar

L = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix}, U = \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}, A = LU

StarStarStarStar

Matrix multiplication: A=[1001]A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B=[4123]B = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}

StarStarStarStar

A×B=[4123] A \times B = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}

StarStarStarStar

Find the trace of a matrix: A=[8157] A = \begin{bmatrix} 8 & 1 \\ 5 & 7 \end{bmatrix}

StarStarStarStar

trace(A)=8+7=15\text{trace}(A) = 8 + 7 = 15

Know
0
Still learning
Click to flip
Know
0
Logo

© Hypatia.Tech. 2024 All rights reserved.