Logo
Pattern

Discover published sets by community

Explore tens of thousands of sets crafted by our community.

Determinants and Properties

18

Flashcards

0/18

Still learning
StarStarStarStar

Determinant Using Cofactor Expansion

StarStarStarStar

Cofactor expansion calculates the determinant by expanding along a row or column,

det(A)=i=1n(1)i+jaijCij\text{det}(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} C_{ij}
, where
CijC_{ij}
is the cofactor of
aija_{ij}
. For
A=(210030104)A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 4 \end{pmatrix}
, expanding along the third column,
det(A)=00+0(3×01×0)=0\text{det}(A) = 0 - 0 + 0(3 \times 0 - 1 \times 0) = 0
.

StarStarStarStar

Determinant of an Identity Matrix

StarStarStarStar

The determinant of an identity matrix of any size is 1. For example,

det(I3)\text{det}(I_3)
for the 3x3 identity matrix
I3=(100010001)I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
is just 1 because the product of the diagonal elements is 1.

StarStarStarStar

Determinant of a Block Matrix

StarStarStarStar

To find the determinant of a block matrix, if the matrix is of the form

(A00B)\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}
where A and B are square matrices, then
det(Block Matrix)=det(A)×det(B)\text{det}(\text{Block Matrix}) = \text{det}(A) \times \text{det}(B)
. Example: For
(200(3412))\begin{pmatrix} 2 & 0 \\ 0 & \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \end{pmatrix}
, the determinant is
2(3241)=42(3 \cdot 2 - 4 \cdot 1) = 4
.

StarStarStarStar

Laplace Expansion (Cofactor Expansion Theorem)

StarStarStarStar

Laplace Expansion is similar to cofactor expansion and is used for calculating the determinant by developing along a row or column. For instance,

det((abcd))=adbc\text{det}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a \cdot d - b \cdot c
, which is the subtraction of the product of the diagonals.

StarStarStarStar

Row Swapping

StarStarStarStar

Switching two rows of a matrix multiplies its determinant by -1. For example, swapping any two rows of a matrix

AA
results in
det(A)=det(A)\text{det}(A') = -\text{det}(A)
. If
A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
and we swap the rows,
det(A)=det((3412))=(43)=1\text{det}(A') = -\text{det}(\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}) = -(4 - 3) = -1
.

StarStarStarStar

Row Addition

StarStarStarStar

Adding a multiple of one row to another does not change the determinant. For instance, if we add

λ\lambda
times row 1 to row 2 in matrix
AA
,
det(A)\text{det}(A)
is unchanged. If
A=(1324)A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}
, and we add 2 times row 1 to row 2, the determinant of
A=(13410)A' = \begin{pmatrix} 1 & 3 \\ 4 & 10 \end{pmatrix}
is still
26=42 - 6 = -4
.

StarStarStarStar

Determinant of a Matrix Product

StarStarStarStar

The determinant of a product of two matrices is the product of their determinants,

det(AB)=det(A)×det(B)\text{det}(AB) = \text{det}(A)\times\text{det}(B)
. If
A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
and
B=(5678)B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}
, then
det(A)=2\text{det}(A) = -2
and
det(B)=2\text{det}(B) = -2
, so
det(AB)=(2)×(2)=4\text{det}(AB) = (-2) \times (-2) = 4
.

StarStarStarStar

Determinant of a Scalar Multiple

StarStarStarStar

The determinant of a scalar multiple of a matrix is the scalar raised to the power of the dimension, times the determinant of the matrix,

det(λA)=λndet(A)\text{det}(\lambda A) = \lambda^n \text{det}(A)
for an nxn matrix
AA
. For example, if
λ=2\lambda = 2
and
A=(1324)A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}
, then
det(2A)=22(1432)=8\text{det}(2A) = 2^2(1 \cdot 4 - 3 \cdot 2) = -8
.

StarStarStarStar

Determinant of a Symmetric Matrix

StarStarStarStar

While there's no special formula for the determinant of a symmetric matrix, it obeys all the standard determinant properties. Given a symmetric matrix

AA
,
A=ATA = A^T
, and so
det(A)=det(AT)\text{det}(A) = \text{det}(A^T)
. An example is
A=(2334)A = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}
, where
det(A)=2433=1\text{det}(A) = 2 \cdot 4 - 3 \cdot 3 = -1
.

StarStarStarStar

Determinant After Row or Column Operations

StarStarStarStar

The determinant changes in specific ways after elementary row or column operations. For example, if a row is multiplied by a non-zero scalar

λ\lambda
, the determinant is multiplied by
λ\lambda
. If two rows are swapped, the determinant changes sign. Adding a multiple of one row to another does not change the determinant. Given
A=(3124)A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}
and multiplying the first row by 3,
det(A)=3×(3412)=30\text{det}(A') = 3 \times (3 \cdot 4 - 1 \cdot 2) = 30
.

StarStarStarStar

Triangular Matrix Determinant

StarStarStarStar

The determinant of a triangular matrix (upper or lower) is the product of its diagonal entries. For an upper triangular matrix

AA
,
det(A)=a11a22...ann\text{det}(A) = a_{11}a_{22}...a_{nn}
. Given
A=(2105)A = \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}
, the determinant is
2×5=102 \times 5 = 10
.

StarStarStarStar

Determinant of the Transpose

StarStarStarStar

The determinant of a matrix and its transpose are the same,

det(A)=det(AT)\text{det}(A) = \text{det}(A^T)
. For matrix
A=(1324)A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}
, both
det(A)\text{det}(A)
and
det(AT)\text{det}(A^T)
equal to
1432=21 \cdot 4 - 3 \cdot 2 = -2
.

StarStarStarStar

Determinant of a Diagonal Matrix

StarStarStarStar

The determinant of a diagonal matrix is the product of its diagonal entries, just like for triangular matrices. For diagonal matrix

DD
,
det(D)=d11d22...dnn\text{det}(D) = d_{11}d_{22}...d_{nn}
. Given
D=(7003)D = \begin{pmatrix} 7 & 0 \\ 0 & 3 \end{pmatrix}
, then
det(D)=7×3=21\text{det}(D) = 7 \times 3 = 21
.

StarStarStarStar

Determinant of a Permutation Matrix

StarStarStarStar

The determinant of a permutation matrix is 1 or -1, depending on whether the number of row swaps from the identity matrix is even (determinant is 1) or odd (determinant is -1). For the permutation matrix

P=(0110)P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
, which is one swap from the identity, hence
det(P)=1\text{det}(P) = -1
.

StarStarStarStar

Determinant of a Singular Matrix

StarStarStarStar

A singular (or non-invertible) matrix has a determinant of zero. For example, if matrix

AA
has a row of zeros or two proportional rows, then
det(A)=0\text{det}(A) = 0
. Given
A=(1224)A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}
(second row is twice the first), then
det(A)=44=0\text{det}(A) = 4 - 4 = 0
.

StarStarStarStar

Permutations and Determinants

StarStarStarStar

A determinant can be calculated by summing the products of elements and their corresponding signed permutation. For a 2x2 matrix

AA
,
det(A)\text{det}(A)
is the sum of the products of the elements of each permutation of the first row with the corresponding elements of the second row, signed by the permutation's parity. For example,
det((abcd))=adbc\text{det}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = ad - bc
, using the permutations (a,d) and (b,c).

StarStarStarStar

Row Multiplication

StarStarStarStar

Multiplying a row by a scalar multiplies the determinant by that scalar. For example, if we multiply a row of

AA
by
λ\lambda
, then
det(A)=λdet(A)\text{det}(A') = \lambda \cdot \text{det}(A)
. Given
A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
, multiplying the first row by 2 yields
det(A)=2det((2434))=2(812)=8\text{det}(A') = 2 \cdot \text{det}(\begin{pmatrix} 2 & 4 \\ 3 & 4 \end{pmatrix}) = 2(8 - 12) = -8
.

StarStarStarStar

Determinant of an Inverse Matrix

StarStarStarStar

The determinant of the inverse of a matrix is the reciprocal of the determinant of the matrix, provided the matrix is invertible,

det(A1)=1det(A)\text{det}(A^{-1}) = \frac{1}{\text{det}(A)}
. For
A=(3021)A = \begin{pmatrix} 3 & 0 \\ 2 & 1 \end{pmatrix}
with
det(A)=3\text{det}(A) = 3
, the determinant of its inverse is
det(A1)=13\text{det}(A^{-1}) = \frac{1}{3}
.

Know
0
Still learning
Click to flip
Know
0
Logo

© Hypatia.Tech. 2024 All rights reserved.