Logo
Pattern

Discover published sets by community

Explore tens of thousands of sets crafted by our community.

Matrix Inequalities

15

Flashcards

0/15

Still learning
StarStarStarStar

Oppenheim's Inequality

StarStarStarStar

For positive semidefinite matrices AA and BB such that BB is invertible, det(A+B)det(A)+det(B)\text{det}(A+B) \geq \text{det}(A) + \text{det}(B). Example: Let A=[2002]A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} and B=[1004]B = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} then det(A+B)=det[3006]=18det(A)+det(B)=4+4=8\text{det}(A+B) = \text{det}\begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix} = 18 \geq \text{det}(A) + \text{det}(B) = 4 + 4 = 8.

StarStarStarStar

Trace Inequality

StarStarStarStar

If AA is a square matrix and BB is a positive semidefinite matrix, then tr(AB)0\text{tr}(AB) \geq 0. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and BB being any positive semidefinite matrix, the trace of their product will be non-negative.

StarStarStarStar

Weyl's Inequality

StarStarStarStar

For Hermitian matrices AA and BB, and their sum A+BA+B, the eigenvalues satisfy λi+j1(A+B)λi(A)+λj(B)\lambda_{i+j-1}(A+B) \leq \lambda_i(A) + \lambda_j(B) for all i,ji, j. Example: If AA and BB are 2×22 \times 2 Hermitian matrices with eigenvalues (λ1,λ2)(\lambda_1, \lambda_2) and (μ1,μ2)(\mu_1, \mu_2) respectively, then λ2(A+B)λ1(A)+μ2(B)\lambda_2(A+B) \leq \lambda_1(A) + \mu_2(B).

StarStarStarStar

Hadamard's Inequality

StarStarStarStar

For any matrix AA with rows r1,r2,,rnr_1, r_2, \ldots, r_n, the determinant satisfies det(A)r1r2rn|\text{det}(A)| \leq \|r_1\| \cdot \|r_2\| \cdots \|r_n\|. Example: For matrix A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, det(A)=(1)(4)(2)(3)=46=212+2232+42=525=11|\text{det}(A)| = |(1)(4) - (2)(3)| = |4 - 6| = 2 \leq \sqrt{1^2 + 2^2} \cdot \sqrt{3^2 + 4^2} = \sqrt{5} \cdot \sqrt{25} = 11.

StarStarStarStar

Frobenius Norm Inequality

StarStarStarStar

For any matrices AA and BB, ABFAFBF\|A \cdot B\|_F \leq \|A\|_F \cdot \|B\|_F. Example: If AA and BB are 2×22 \times 2 matrices, then the Frobenius norm of their product should not exceed the product of their Frobenius norms.

StarStarStarStar

Fan Inequality

StarStarStarStar

For Hermitian matrices AA and BB with eigenvalues λ1λ2λn\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n and μ1μ2μn\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n respectively, tr(AB)i=1nλiμi\text{tr}(AB) \leq \sum_{i=1}^{n}\lambda_i\mu_i. Example: If A=[4002]A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} and B=[3001]B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}, then tr(AB)=43+21=14(43+21)=14\text{tr}(AB) = 4 \cdot 3 + 2 \cdot 1 = 14 \leq (4 \cdot 3 + 2 \cdot 1) = 14.

StarStarStarStar

Schur Product Theorem

StarStarStarStar

For any two positive semidefinite matrices AA and BB, their Schur (or Hadamard) product ABA \circ B is also positive semidefinite. Example: Let AA and BB be 2×22 \times 2 positive semidefinite matrices; their Schur product will have non-negative eigenvalues.

StarStarStarStar

Sylvester's Criterion

StarStarStarStar

A symmetric matrix AA is positive definite if and only if all leading principal minors of AA are positive. Example: The matrix A=[2112]A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} is positive definite because all its principal minors (2, 3) are positive.

StarStarStarStar

Lyapunov's Inequality for Matrices

StarStarStarStar

Given any p,q,r>0p, q, r > 0 such that 1r=1p+1q\frac{1}{r} = \frac{1}{p} + \frac{1}{q}, for matrices AA and BB we have ABrApBq\|AB\|_r \leq \|A\|_p \cdot \|B\|_q. Example: If AA and BB are 2×22 \times 2 matrices and p=q=r=2p = q = r = 2 (Frobenius norm), then AB2A2B2\|AB\|_2 \leq \|A\|_2 \cdot \|B\|_2.

StarStarStarStar

Matrix Holder Inequality

StarStarStarStar

For any matrices AA and BB, and p,q>1p, q > 1 with 1p+1q=1\frac{1}{p} + \frac{1}{q} = 1, we have tr(AB)ApBq|\text{tr}(AB^*)| \leq \|A\|_p \cdot \|B\|_q. Example: For p=q=2p = q = 2 (Frobenius norms), tr(AB)AFBF|\text{tr}(AB^*)| \leq \|A\|_F \cdot \|B\|_F for any A,BA, B.

StarStarStarStar

Minkowski's Inequality for Matrices

StarStarStarStar

For matrices AA and BB under any unitarily invariant norm, A+BA+B\|A+B\| \leq \|A\| + \|B\|. Example: If AA and BB are 2×22 \times 2 matrices and using the Frobenius norm, then A+BFAF+BF\|A+B\|_F \leq \|A\|_F + \|B\|_F, which holds as an equality if and only if AA and BB are positive multiples of each other.

StarStarStarStar

Cauchy-Schwarz Inequality

StarStarStarStar

For any vectors xx and yy in an inner product space, x,yxy|\langle x, y \rangle| \leq \|x\| \cdot \|y\|. Example: For x=(1,2)x = (1,2) and y=(3,4)y = (3,4), 13+24=1112+2232+42|1 \cdot 3 + 2 \cdot 4| = 11 \leq \sqrt{1^2 + 2^2} \cdot \sqrt{3^2 + 4^2} which simplifies to 11525=1111 \leq \sqrt{5} \cdot \sqrt{25} = 11.

StarStarStarStar

Triangle Inequality for Matrices

StarStarStarStar

For any matrices AA and BB of the same size, A+BA+B\|A + B\| \leq \|A\| + \|B\|. Example: If A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and B=[5678]B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, then A+B\|A+B\| should be less than or equal to A+B\|A\|+\|B\| for any chosen matrix norm.

StarStarStarStar

von Neumann's Trace Inequality

StarStarStarStar

For any matrices AA and BB of the same size with singular values σ1σ2σn\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n and τ1τ2τn\tau_1 \geq \tau_2 \geq \ldots \geq \tau_n respectively, tr(AB)i=1nσiτi|\text{tr}(A^*B)| \leq \sum_{i=1}^{n}\sigma_i\tau_i. Example: If A=[3001]A = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} and B=[1003]B = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}, then tr(AB)=tr(AB)=31+13=6(31+13)=6|\text{tr}(A^*B)| = |\text{tr}(AB)| = |3 \cdot 1 + 1 \cdot 3| = 6 \leq (3 \cdot 1 + 1 \cdot 3) = 6.

StarStarStarStar

Positive Semi-Definite Matrix Sum

StarStarStarStar

If AA and BB are positive semidefinite matrices, then A+BA + B is also positive semidefinite. Example: Given that A=[2002]A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} and B=[1001]B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} are positive semidefinite, their sum [3003]\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} is also positive semidefinite.

Know
0
Still learning
Click to flip
Know
0
Logo

© Hypatia.Tech. 2024 All rights reserved.