Logo
Pattern

Discover published sets by community

Explore tens of thousands of sets crafted by our community.

Linear Algebra Formulas

20

Flashcards

0/20

Still learning
StarStarStarStar

Eigenvalues of a Matrix

StarStarStarStar

An eigenvalue λ\lambda of a matrix AA is a scalar such that there exists a non-zero vector vv where Av=λvA\mathbf{v} = \lambda\mathbf{v}. Example: For A=[4123]A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}, one eigenvalue is λ=5\lambda = 5 because (A5I)v=0(A - 5I)\mathbf{v} = 0 has a non-trivial solution.

StarStarStarStar

Calculating the Trace of a Matrix

StarStarStarStar

The trace of a square matrix AA, denoted as tr(A)tr(A), is the sum of its diagonal elements. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, tr(A)=1+4=5tr(A) = 1 + 4 = 5.

StarStarStarStar

Eigenvectors of a Matrix

StarStarStarStar

An eigenvector of a matrix AA is a non-zero vector v\mathbf{v} such that Av=λvA\mathbf{v} = \lambda\mathbf{v} for some scalar λ\lambda, the eigenvalue. Example: For A=[4123]A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} and λ=5\lambda = 5, an eigenvector is v=[11]\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} because Av=5vA\mathbf{v} = 5\mathbf{v}.

StarStarStarStar

LU Decomposition

StarStarStarStar

LU decomposition expresses a matrix AA as the product of a lower triangular matrix LL and an upper triangular matrix UU. Example: For A=[4363]A = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}, L=[101.51],U=[4301.5]L = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix}, U = \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}, so A=LUA = LU.

StarStarStarStar

Dot Product

StarStarStarStar

The dot product of two vectors a\mathbf{a} and b\mathbf{b} is a scalar ab=a1b1+a2b2+...+anbn\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + ... + a_nb_n. Example: For a=[123]\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, b=[456]\mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, ab=14+25+36=32\mathbf{a} \cdot \mathbf{b} = 1\cdot4 + 2\cdot5 + 3\cdot6 = 32.

StarStarStarStar

Column Space

StarStarStarStar

The column space of a matrix AA, col(A)col(A), is the span of its column vectors. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, col(A)col(A) is the plane spanned by [13]\begin{bmatrix} 1 \\ 3 \end{bmatrix} and [24]\begin{bmatrix} 2 \\ 4 \end{bmatrix} in R2\mathbb{R}^2.

StarStarStarStar

Row Space

StarStarStarStar

The row space of a matrix AA, denoted as row(A)row(A), is the subspace generated by its row vectors. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, row(A)row(A) is the plane spanned by [12]\begin{bmatrix} 1 & 2 \end{bmatrix} and [34]\begin{bmatrix} 3 & 4 \end{bmatrix} in R2\mathbb{R}^2.

StarStarStarStar

Cross Product

StarStarStarStar

The cross product of vectors a\mathbf{a} and b\mathbf{b} in R3\mathbb{R}^3 is a vector c=a×b\mathbf{c} = \mathbf{a} \times \mathbf{b}, calculated as c=ijka1a2a3b1b2b3\mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}. Example: For a=[100]\mathbf{a} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, b=[010]\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, a×b=[001]\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.

StarStarStarStar

Scalar Multiplication

StarStarStarStar

Given a scalar kk and a matrix AA, the product kAkA is obtained by multiplying each element of AA by kk. Example: For k=3k = 3 and A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, 3A=[36912]3A = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}.

StarStarStarStar

Matrix Multiplication

StarStarStarStar

The product of two matrices AA and BB, is a new matrix CC where each element cijc_{ij} is the dot product of the ith row of AA and the jth column of BB. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and B=[5678]B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, AB=[19224350]AB = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}.

StarStarStarStar

Kernel or Null Space

StarStarStarStar

The kernel of a matrix AA, denoted as ker(A)ker(A), is the set of vectors v\mathbf{v} such that Av=0A\mathbf{v} = \mathbf{0}. Example: For A=[1236]A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}, ker(A)={t[21]tR}ker(A) = \left\{ t\begin{bmatrix} -2 \\ 1 \end{bmatrix} | t \in \mathbb{R} \right\}.

StarStarStarStar

Calculating Determinant of 2x2 Matrix

StarStarStarStar

For a 2x2 matrix A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, the determinant is A=adbc|A| = ad - bc. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, A=1423=2|A| = 1\cdot4 - 2\cdot3 = -2.

StarStarStarStar

Rank of a Matrix

StarStarStarStar

The rank of a matrix AA is the maximum number of linearly independent column vectors (or row vectors) in the matrix. Example: For A=[123456789]A = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}, since the third row is a linear combination of the first two, rank(A)=2rank(A) = 2.

StarStarStarStar

Identity Matrix

StarStarStarStar

The identity matrix InI_n of size nn is a square matrix with ones on the main diagonal and zeros elsewhere. Example: I2=[1001]I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.

StarStarStarStar

Diagonal Matrix

StarStarStarStar

A diagonal matrix DD is a matrix where all off-diagonal elements are zero. Example: D=[d1000d2000d3]D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}.

StarStarStarStar

Finding Matrix Inverse

StarStarStarStar

For a square matrix AA, the inverse is A1=1Aadj(A)A^{-1} = \frac{1}{|A|} \cdot adj(A) where A|A| is the determinant and adj(A)adj(A) is the adjugate. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, A1=12[4231]=[211.50.5]A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}.

StarStarStarStar

Matrix Addition

StarStarStarStar

For two matrices AA and BB of the same dimension, their sum C=A+BC = A + B is found by adding corresponding elements. Example: For A=[1324]A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} and B=[5768]B = \begin{bmatrix} 5 & 7 \\ 6 & 8 \end{bmatrix}, A+B=[610812]A + B = \begin{bmatrix} 6 & 10 \\ 8 & 12 \end{bmatrix}.

StarStarStarStar

Matrix Norm

StarStarStarStar

The norm of a matrix AA, denoted A||A||, gives a measure of its size. Common norm is the Frobenius norm AF=i=1mj=1naij2||A||_F = \sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n}|a_{ij}|^2}. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, AF=12+22+32+42=30||A||_F = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30}.

StarStarStarStar

Cramer's Rule

StarStarStarStar

For a system of linear equations AX=BAX = B with a square matrix AA, the solution for each variable xix_i is given by xi=Ai(B)Ax_i = \frac{|A_i(B)|}{|A|}, where Ai(B)A_i(B) is matrix AA with its ith column replaced by vector BB. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and B=[56]B = \begin{bmatrix} 5 \\ 6 \end{bmatrix}, x1=[5264][1234]=82=4x_1 = \frac{|\begin{bmatrix} 5 & 2 \\ 6 & 4 \end{bmatrix}|}{|\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}|} = \frac{8}{-2} = -4.

StarStarStarStar

Matrix Transpose

StarStarStarStar

The transpose of a matrix AA is a new matrix ATA^T, where the rows of AA are the columns of ATA^T. Example: For A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, AT=[1324]A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}.

Know
0
Still learning
Click to flip
Know
0
Logo

© Hypatia.Tech. 2024 All rights reserved.