Logo
Pattern

Discover published sets by community

Explore tens of thousands of sets crafted by our community.

Confidence Intervals

15

Flashcards

0/15

Still learning
StarStarStarStar

T-Interval for a Population Mean (σ unknown)

StarStarStarStar

To calculate a T-interval, use the formula:

xˉ±tsn\bar{x} \pm t\frac{s}{\sqrt{n}}
. Interpretation: We are ##% confident that the true population mean falls within this interval.

StarStarStarStar

Log-Normal Distribution Mean Confidence Interval

StarStarStarStar

To calculate the CI for the mean of a log-normal distribution:

exp(xˉ±zsn)\exp\left(\bar{x} \pm z\frac{s}{\sqrt{n}}\right)
Interpretation: We are ##% confident that the true mean of the log-normal distribution falls within this interval.

StarStarStarStar

Paired T-Interval

StarStarStarStar

To calculate a Paired T-Interval, use the formula:

dˉ±tsdn\bar{d} \pm t\frac{s_d}{\sqrt{n}}
. Interpretation: We are ##% confident that the mean difference between the paired data falls within this interval.

StarStarStarStar

Confidence Interval for the Ratio of Two Variances

StarStarStarStar

To calculate this interval, use the formula:

(s12/s22F1α/2,df1,df2,s12/s22Fα/2,df1,df2)\left(\frac{s_1^2 / s_2^2}{F_{1-\alpha/2, df1, df2}}, \frac{s_1^2 / s_2^2}{F_{\alpha/2, df1, df2}}\right)
Interpretation: We are ##% confident that the ratio of the two population variances falls within this interval.

StarStarStarStar

Confidence Interval for Exponential Distribution Mean

StarStarStarStar

To calculate this interval, use the formula:

(2xiχα/22,2xiχ1α/22)\left(\frac{2\sum x_i}{\chi_{\alpha/2}^2}, \frac{2\sum x_i}{\chi_{1-\alpha/2}^2}\right)
Interpretation: We are ##% confident that the true mean of the exponential distribution falls within this interval.

StarStarStarStar

Confidence Interval for a Population Median

StarStarStarStar

For a large sample size, approximate using the normal distribution:

m~±z12n\tilde{m} \pm z\frac{1}{2\sqrt{n}}
Interpretation: We are ##% confident that the true population median falls within this interval.

StarStarStarStar

Confidence Interval for Population Variance

StarStarStarStar

To calculate this interval, use the formula:

((n1)s2χα/22,(n1)s2χ1α/22)\left(\frac{(n-1)s^2}{\chi_{\alpha/2}^2}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}\right)
Interpretation: We are ##% confident that the true population variance falls within this interval.

StarStarStarStar

Z-Interval for a Population Mean (σ known)

StarStarStarStar

To calculate a Z-interval, use the formula:

xˉ±zσn\bar{x} \pm z\frac{σ}{\sqrt{n}}
. Interpretation: We are ##% confident that the true population mean falls within this interval.

StarStarStarStar

Two-Independent-Samples T-Interval for Difference in Means

StarStarStarStar

To calculate this interval, use the formula:

(xˉ1xˉ2)±ts12n1+s22n2(\bar{x}_1 - \bar{x}_2) \pm t\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}
. Interpretation: We are ##% confident that the difference in population means falls within this interval.

StarStarStarStar

Confidence Interval for Standard Deviation

StarStarStarStar

To calculate this interval, use the formula:

((n1)s2χα/22,(n1)s2χ1α/22)\left(\sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}}, \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}\right)
Interpretation: We are ##% confident that the true population standard deviation falls within this interval.

StarStarStarStar

Confidence Interval for a Population Correlation Coefficient

StarStarStarStar

To calculate this interval, use the Fisher z-transformation:

tanh(\arctanh(r)±zn3)\tanh\left(\arctanh(r) \pm \frac{z}{\sqrt{n-3}}\right)
Interpretation: We are ##% confident that the true population correlation coefficient falls within this interval.

StarStarStarStar

One-Proportion Z-Interval

StarStarStarStar

To calculate a One-Proportion Z-Interval, use the formula:

p^±zp^(1p^)n\hat{p} \pm z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
. Interpretation: We are ##% confident that the true population proportion falls within this interval.

StarStarStarStar

Confidence Interval for the Slope of a Regression Line

StarStarStarStar

To calculate this interval, use the formula:

b±tseSSxxb \pm t\frac{s_e}{\sqrt{SS_{xx}}}
Interpretation: We are ##% confident that the true slope of the population regression line falls within this interval.

StarStarStarStar

Two-Independent-Samples Z-Interval for Difference in Means

StarStarStarStar

To calculate this interval, use the formula:

(xˉ1xˉ2)±zσ12n1+σ22n2(\bar{x}_1 - \bar{x}_2) \pm z\sqrt{\frac{σ_1^2}{n_1} + \frac{σ_2^2}{n_2}}
. Interpretation: We are ##% confident that the difference in population means falls within this interval.

StarStarStarStar

One-Proportion Z-Interval for Proportion Difference

StarStarStarStar

To calculate this interval, use the formula:

(p^1p^2)±zp^1(1p^1)n1+p^2(1p^2)n2(\hat{p}_1 - \hat{p}_2) \pm z\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}
. Interpretation: We are ##% confident that the difference in population proportions falls within this interval.

Know
0
Still learning
Click to flip
Know
0
Logo

© Hypatia.Tech. 2024 All rights reserved.