Logo
Pattern

Discover published sets by community

Explore tens of thousands of sets crafted by our community.

Mechanical Engineering Formulas

46

Flashcards

0/46

Still learning
StarStarStarStar

Newton's Second Law

StarStarStarStar

F=ma\vec{F} = m \vec{a}

StarStarStarStar

Darcy-Weisbach Equation

StarStarStarStar

hf=fLv2D2gh_f = \frac{f L v^2}{D 2g}

StarStarStarStar

Momentum (Linear)

StarStarStarStar

p=mv\vec{p} = m \vec{v}

StarStarStarStar

Kinetic Energy (Rotational)

StarStarStarStar

K=12Iω2K = \frac{1}{2} I \omega^2

StarStarStarStar

Bending Equation

StarStarStarStar

MI=σy=ER\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}

StarStarStarStar

Lift Coefficient

StarStarStarStar

CL=2Lρv2AC_L = \frac{2L}{\rho v^2 A}

StarStarStarStar

Drag Coefficient

StarStarStarStar

CD=2Dρv2AC_D = \frac{2D}{\rho v^2 A}

StarStarStarStar

Kinetic Energy (Linear)

StarStarStarStar

K=12mv2K = \frac{1}{2} m v^2

StarStarStarStar

Work Done by a Force

StarStarStarStar

W=Fdcos(θ)W = F d \cos(\theta)

StarStarStarStar

Pressure Drop in a Pipe (Hagen-Poiseuille Equation)

StarStarStarStar

ΔP=8μLQπR4\Delta P = \frac{8 \mu L Q}{\pi R^4}

StarStarStarStar

Ideal Gas Law

StarStarStarStar

PV=nRTPV = nRT

StarStarStarStar

Volumetric Strain

StarStarStarStar

ϵv=ΔV/V0\epsilon_v = \Delta V / V_0

StarStarStarStar

Hooke's Law for Springs

StarStarStarStar

F=kxF = -kx

StarStarStarStar

Convective Heat Transfer Coefficient

StarStarStarStar

h=kLch = \frac{k}{L_c}

StarStarStarStar

Modulus of Toughness

StarStarStarStar

Ut=0ϵfσdϵU_t = \int_0^{\epsilon_f} \sigma d\epsilon

StarStarStarStar

Shear Stress

StarStarStarStar

τ=FA\tau = \frac{F}{A}

StarStarStarStar

Continuity Equation (Fluids)

StarStarStarStar

A1v1=A2v2A_1 v_1 = A_2 v_2

StarStarStarStar

Thermal Expansion

StarStarStarStar

ΔL=αL0ΔT\Delta L = \alpha L_0 \Delta T

StarStarStarStar

Moment of Inertia (for a solid cylinder)

StarStarStarStar

I=12mr2I = \frac{1}{2} m r^2

StarStarStarStar

Mechanical Advantage of a Lever

StarStarStarStar

MA=LeffortLloadMA = \frac{L_{effort}}{L_{load}}

StarStarStarStar

Euler's Buckling Load

StarStarStarStar

Fcr=π2EI(kL)2F_{cr} = \frac{\pi^2 E I}{(kL)^2}

StarStarStarStar

Modulus of Resilience

StarStarStarStar

Ur=σy22EU_r = \frac{\sigma_y^2}{2E}

StarStarStarStar

Weber Number

StarStarStarStar

We=ρv2LσWe = \frac{\rho v^2 L}{\sigma}

StarStarStarStar

Heat Transfer (Conduction)

StarStarStarStar

Q=kA(T1T2)dQ = \frac{kA(T_1 - T_2)}{d}

StarStarStarStar

First Law of Thermodynamics

StarStarStarStar

ΔU=QW\Delta U = Q - W

StarStarStarStar

Thrust

StarStarStarStar

T=m˙ve+(pep0)AeT = \dot{m} v_e + (p_e - p_0) A_e

StarStarStarStar

Capacitance

StarStarStarStar

C=QVC = \frac{Q}{V}

StarStarStarStar

Mach Number

StarStarStarStar

M=vaM = \frac{v}{a}

StarStarStarStar

Mohr's Circle for Plane Stress

StarStarStarStar

σavg=σx+σy2\sigma_{avg} = \frac{\sigma_x + \sigma_y}{2}

StarStarStarStar

Heat Transfer (Convection)

StarStarStarStar

Q=hA(TsT)Q = hA(T_s - T_\infty)

StarStarStarStar

Momentum (Angular)

StarStarStarStar

L=IωL = I\omega

StarStarStarStar

Froude Number

StarStarStarStar

Fr=vgLFr = \frac{v}{\sqrt{g L}}

StarStarStarStar

Strain

StarStarStarStar

ϵ=ΔLL0\epsilon = \frac{\Delta L}{L_0}

StarStarStarStar

Reynolds Number

StarStarStarStar

Re=ρvLμRe = \frac{\rho v L}{\mu}

StarStarStarStar

Bernoulli's Equation

StarStarStarStar

P+12ρv2+ρgh=constantP + \frac{1}{2} \rho v^2 + \rho g h = \text{constant}

StarStarStarStar

Power

StarStarStarStar

P=ΔWΔt=FvP = \frac{\Delta W}{\Delta t} = F v

StarStarStarStar

Heat Transfer (Radiation)

StarStarStarStar

Q=ϵσA(T4T4)Q = \epsilon \sigma A(T^4 - T_\infty^4)

StarStarStarStar

Hardness (Brinell Hardness Number)

StarStarStarStar

BHN=2PπD(DD2d2)BHN = \frac{2P}{\pi D (D - \sqrt{D^2 - d^2})}

StarStarStarStar

Specific Heat Capacity at Constant Pressure

StarStarStarStar

cp=1m(ΔQΔT)Pc_p = \frac{1}{m}\left(\frac{\Delta Q}{\Delta T}\right)_P

StarStarStarStar

Poiseuille's Law for Fluid Flow

StarStarStarStar

Q=πPr48μLQ = \frac{\pi P r^4}{8 \mu L}

StarStarStarStar

Stress

StarStarStarStar

σ=FA\sigma = \frac{F}{A}

StarStarStarStar

Potential Energy (Gravitational)

StarStarStarStar

U=mghU = m g h

StarStarStarStar

Young's Modulus

StarStarStarStar

E=σϵE = \frac{\sigma}{\epsilon}

StarStarStarStar

Torque

StarStarStarStar

τ=r×F\tau = r \times F

StarStarStarStar

Hydraulic Diameter

StarStarStarStar

Dh=4APD_h = \frac{4 A}{P}

StarStarStarStar

Nusselt Number

StarStarStarStar

Nu=hLkNu = \frac{h L}{k}

Know
0
Still learning
Click to flip
Know
0
Logo

© Hypatia.Tech. 2024 All rights reserved.